Photosynthate partitioning and fermentation in hot spring microbial mat communities.
نویسندگان
چکیده
Patterns of (sup14)CO(inf2) incorporation into molecular components of the thermophilic cyanobacterial mat communities inhabiting hot springs located in Yellowstone National Park and Synechococcus sp. strain C1 were investigated. Exponentially growing Synechococcus sp. strain C1 partitioned the majority of incorporated (sup14)CO(inf2) into protein, low-molecular-weight metabolites, and lipid fractions (45, 22, and 18% of total incorporated carbon, respectively). In contrast, mat cores from various hot springs predominantly accumulated polyglucose during periods of illumination (between 77 and 85% of total incorporated (sup14)CO(inf2)). Although photosynthetically active, mat photoautotrophs do not appear to be rapidly growing, since we also detected only limited synthesis of macromolecules associated with growth (i.e., protein and rRNA). To test the hypothesis that polysaccharide reserves are fermented in situ under the dark anaerobic conditions cyanobacterial mats experience at night, mat cores were prelabeled with (sup14)CO(inf2) under illuminated conditions and then transferred to dark anaerobic conditions. Radiolabel in the polysaccharide fraction decreased by 74.7% after 12 h, of which 58.5% was recovered as radiolabeled acetate, CO(inf2), and propionate. These results indicate tightly coupled carbon fixation and fermentative processes and the potential for significant transfer of carbon from primary producers to heterotrophic members of these cyanobacterial mat communities.
منابع مشابه
In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle.
UNLABELLED Microbes can produce molecular hydrogen (H2) via fermentation, dinitrogen fixation, or direct photolysis, yet the H2 dynamics in cyanobacterial communities has only been explored in a few natural systems and mostly in the laboratory. In this study, we investigated the diel in situ H2 dynamics in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechoc...
متن کاملA natural view of microbial biodiversity within hot spring cyanobacterial mat communities.
This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none o...
متن کاملIn situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats.
Genome sequences of two Synechococcus ecotypes inhabiting the Octopus Spring microbial mat in Yellowstone National Park revealed the presence of all genes required for nitrogenase biosynthesis. We demonstrate that nif genes of the Synechococcus ecotypes are expressed in situ in a region of the mat that varies in temperature from 53.5 degrees C to 63.4 degrees C (average 60 degrees C); transcrip...
متن کاملDiversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland).
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacte...
متن کاملThe Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses
Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 62 12 شماره
صفحات -
تاریخ انتشار 1996